Sixth Semester B.E. Degree Examination, June/July 2016

Antennas and Propagation

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Explain the following terms as related to antenna systems:
 - i) Beam area
- ii) Directivity
- iii) Power gain

- iv) Effective aperture
- v) Radiation resistance

- (10 Marks)
- b. Find the directivity of the power pattern given by $U = U_m \sin^2 \theta \sin^3 \phi$; $0 \le \theta \le \pi$; $0 \le \phi \le \pi$.
- c. An antenna has a field pattern given by $E(\theta) = \cos \theta \cos 2\theta$ for $0 \le \theta \le 90^{\circ}$. Find half power beam width (HPBW) and beam width between first nulls (BWFN). (05 Marks)
- 2 a. Derive an expression for array factor and relative field of linear array of 'n' isotropic point sources of equal magnitude and spacing. (08 Marks)
 - b. Complete the field patterns and find BWFN and HPBW for an array of 4 point sources spaced $\lambda/6$ distance apart. They have a phase difference of $\pi/3$ between adjacent elements.
 - (06 Marks)
 - c. Explain the principle of pattern multiplication with an example.
- (06 Marks)

3 a. Derive the far field components of short dipole.

(07 Marks)

- b. For a short dipole of $\lambda/15$ long and loss resistance of 1Ω . Find:
 - i) Efficiency
 - ii) Radiation resistance
 - iii) Effective aperture

(06 Marks)

- c. Write short notes on:
 - i) V-antennas
 - ii) Folded dipole antennas
 - iii) Rhombic antenna

(07 Marks)

4 a. Derive the far field expressions for small loop antenna.

(07 Marks)

b. Explain patch or microstrip antennas with necessary sketch.

- (06 Marks)
- With relevant sketches, explain the principle of Babinet's principle for complementary linear antennas.
 (07 Marks)

PART - B

- 5 a. Explain the practical design considerations for the axial mode helical antennas. (10 Marks)
 - b. Write short notes on:
 - i) Yagi-Uda antenna
 - ii) Corner reflector antenna

(10 Marks)

- Explain the constructional details of Sleeve antenna and Turnstile antenna. (08 Marks) Write short notes on:
 - - i) Embedded antennas

iii) Plasma antennas

ii) Ultra wideband antennas

b. Explain duct propagation in detail.

(12 Marks)

7 a. Derive an expression for wave tilt of surface wave.

- (08 Marks) (06 Marks)
- c. Estimate the wave tilt in degrees of the surface wave over an earth of 5 millimhos conductivity and relative permittivity of 10 at 1 MHz. (06 Marks)
- a. Derive an expression for refractive index of an ionospheric propagation. (06 Marks)
 - A high frequency link is established for a range of 2000 km. If the reflection region of ionosphere is at a height of 200 km and has a critical frequency of 6 MHz, calculate maximum usable frequency (MUF). (06 Marks)
 - Define the following terms related to ionospheric propagation:
 - i) MUF
 - ii) Critical frequency
 - iii) Virtual height
 - iv) Skip distance

idny confidential document

(08 Marks)